11.8 JUNCAP Model

11.8.1 Syntax

The syntax (or "insertion statement") is:

juncap_n (A, K) <parameters>

n : occurrence indicator

<parameters> : list of model parameters

Example:

juncap_a (0,07) level=1, jsggr=1e-9; (see also [9] manual for further details.)

11.8.2 Theory

In this section the elementary physics of a junction diode is summarized. An extensive survey can be found in the textbooks about semiconductor devices [1], pp 74-96]. Generally, the current voltage characteristics can be represented as follows:

$$J = \{J_d(n^2_i) + J_g(n_i, V)\} \cdot \left[\exp\left(\frac{qV}{kT}\right) - 1\right]$$
(11.36)

$$n_i \sim T^{3/2} \cdot \exp\left(\frac{-E_g}{2kT}\right) \tag{11.37}$$

In which:

Quantity Units Description

J	Am ⁻²	Total reverse current density
J _d	Am ⁻²	Diffusion saturation current density
$J_{ m g}$	Am ⁻²	Generation current density
n _i	m ⁻³	Intrinsic carrier concentration

Quantity	Units	Description	
V	V	Voltage across the diode	
Eg	J	Energy gap	
k	JK ⁻¹	Boltzmann constant	
Т	Κ	Temperature	

For $V < V_D$ the charge of the junction capacitance is described by:

$$Q = Q_J \cdot \left[1 - \left(1 - \frac{V}{V_D} \right)^{(1-P)} \right]$$
(11.38)

In which:

Quantity	Units	Description
Q	С	Total diode junction charge
Q_{J}	С	Junction charge at built-in voltage
V	V	Voltage across the diode
V _D	V	Junction diffusion voltage
Р	-	Junction grading coefficient

11.8.3 JUNCAP Model Equations

The JUNCAP model is intended to describe the behaviour of the diodes that are formed by the source, drain or well-to-bulk junctions in MOS devices. The model is limited to the case of reverse biasing of these junctions. Similarly to the MOS model, the current equations are formulated and AC effects are modeled via charge equations using the quasi-static approximation. In order to include the effects from differences in the sidewall, bottom and gate-edge-junction profiles, these three contributions are calculated separately in the JUNCAP model. Both the diffusion and the generation currents are treated in the model, each with its own temperature and voltage dependence.

In the JUNCAP model a part of the total charge comes from the gate-edge junction very close to the surface. This charge is also included in the MOS-model charge

equations, and is therefore counted twice. However this results in only a very minor error.

In the next section the model equations are presented. Correct operation of the model in a circuit-simulator environment requires some numerical additions, that are described in the section on the implementation. Finally any fixed capacitance that is present on a node - e.g. the metal-1-to-substrate capacitance - must appear in a fixed-capacitor statement or must be included in INTCAP. They no longer form a part of the JUNCAP model in contrast to the old NODCAP model.

11.8.4 Nomenclature

List of Electrical Variables

No.	Variable	Programming	Units	Description
		Name		
1	$V_{\rm A}$	VA	V	Potential applied to the anode
2	$V_{\rm K}$	VK	V	Potential applied to the cathode
3	I _A	IA	А	DC current into the anode
4	I _K	IK	А	DC current into the cathode
5	Q_{A}	QA	С	Charge in the device attributed to the anode
6	$Q_{\rm K}$	QK	С	Charge in the device attributed to the cathode

Parameter list

No.	Symbol	Programming	Units	Description
		Name		
1	-	LEVEL		Level of this model. Must be set to 1
2	$A_{\rm B}$	AB	m^2	Diffusion area
3	L _S	LS	m	Length of the side-wall of the diffusion area AB which is not under the gate
4	L _G	LG	m	Length of the side-wall of the diffusion area AB which is under the gate
5	$\Delta T_{\rm A}$	DTA	⁰ C	Temperature offset of the JUNCAP element with respect to $T_{\rm A}$
6	T _R	TR	⁰ C	Temperature at which the parameters have been determined
7	V _R	VR	V	Voltage at which parameters have been determined
8	J _{SGBR}	JSGBR	Am ⁻²	Bottom saturation-current density due to electron-hole generation at $V = V_R$
9	J _{SDBR}	JSDBR	Am ⁻²	Bottom saturation-current density due to diffusion from back contact

No.	Symbol	Programming	Units	Description
		Name		
10	J _{SGSR}	JSGSR	Am ⁻¹	Sidewall saturation-current density due to electron-hole generation at $V = V_R$
11	J _{SDSR}	JSDSR	Am ⁻¹	Sidewall saturation-current density due to diffusion from back contact
12	J _{SGGR}	JSGGR	Am ⁻¹	Gate edge saturation-current density due to electron-hole generation at $V = V_R$
13	J _{SDGR}	JSDGR	Am ⁻¹	Gate edge saturation-current density due to diffusion from back contact
14	$N_{\rm B}$	NB	-	Emission coefficient of the bottom forward current
15	$N_{\rm S}$	NS	-	Emission coefficient of the sidewall forward current
16	N _G	NG	-	Emission coefficient of the gate edge forward current
17	$V_{\rm B}$	VB	V	Reverse breakdown voltage
18	$C_{\rm JBR}$	CJBR	Fm ⁻²	Bottom junction capacitance at $V = V_R$
19	$C_{\rm JSR}$	CJSR	Fm ⁻¹	Sidewall junction capacitance at $V = V_R$
20	$C_{\rm JGR}$	CJGR	Fm ⁻¹	Gate edge junction capacitance at $V = V_R$
21	V _{DBR}	VDBR	V	Diffusion voltage of the bottom junction at $T = T_R$
22	V _{DSR}	VDSR	V	Diffusion voltage of the sidewall junction at $T = T_R$
23	V _{DGR}	VDGR	V	Diffusion voltage of the gate edge junction at $T = T_R$
24	$P_{\rm B}$	PB	-	Bottom-junction grading coefficient
25	P _S	PS	-	Sidewall-junction grading coefficient
26	$P_{\rm G}$	PG	-	Gate-edge-junction grading coeffcient

No.	Parameter	Programming	Units	Description
		Name		
1	V _{DB}	VDB	V	Diffusion voltage of bottom area $A_{\rm B}$
2	V _{DS}	VDS	V	Diffusion voltage of Locos-edge $L_{\rm S}$
3	V _{DG}	VDG	V	Diffusion voltage of gate-edge $L_{\rm G}$
4	$C_{\rm JB}$	CJB	F	Capacitance of bottom area $A_{\rm B}$
5	$C_{\rm JS}$	CJS	F	Capacitance of Locos-edge $L_{\rm S}$
6	$C_{\rm JG}$	CJG	F	Capacitance of gate-edge $L_{\rm G}$
7	I _{SDB}	ISDB	А	Diffusion saturation-current of bottom area $A_{\rm B}$
8	I _{SDS}	ISDS	А	Diffusion saturation-current of Locos-edge $L_{\rm S}$
9	I _{SDG}	ISDG	А	Diffusion saturation-current of gate-edge $L_{\rm G}$
10	I _{SGB}	ISGB	А	Generation saturation-current of bottom area $A_{\rm B}$
11	I _{SGS}	ISGS	А	Generation saturation-current of Locos-edge $L_{\rm S}$
12	I _{SGG}	ISGG	А	Generation saturation-current of gate-edge $L_{\rm G}$
13	$T_{\rm A}$	ТА	⁰ C	Ambient circuit temperature
14	T _{KD}	TKD	K	Absolute temperature of the junction/device
15	V	V	V	Diode bias voltage ($V = V_A - V_K$)
16	Ι	Ι	А	Total DC current from anode to cathode $(I = I_A = -I_K)$
17	Q	Q	С	Total junction charge ($Q = Q_A = -Q_K$)

List of Internal Variables and Parameters

11.8.5 Pstar specific values

The default values and clipping values as used by **Pstar** for the juncap model are listed below.

Position	Parameter	Units	Default	Clip low	Clip high
in list	name				
1	LEVEL	-	1	-	-
2	AB	m^2	1.00×10^{-12}	0.00	-
3	LS	m	1.00×10 ⁻⁶	0.00	-
4	LG	m	1.00×10 ⁻⁶	0.00	-
5	DTA	°C	0.00	-	-
6	TR	°C	25.00	-273.15	-
7	VR	V	0.00	-	-
8	JSGBR	Am ⁻²	1.00×10^{-3}	0.00	-
9	JSDBR	Am ⁻²	1.00×10 ⁻³	0.00	-
10	JSGSR	Am ⁻¹	1.00×10 ⁻³	0.00	-
11	JSDSR	Am ⁻¹	1.00×10 ⁻³	0.00	-
12	JSGGR	Am ⁻¹	1.00×10 ⁻³	0.00	-
13	JSDGR	Am ⁻¹	1.00×10 ⁻³	0.00	-
14	NB	-	1.00	0.1	-
15	NS	-	1.00	0.1	-
16	NG	-	1.00	0.1	-
17	VB*	V	0.90	-	-
18	CJBR	Fm ⁻²	1.00×10^{-12}	0.00	-
19	CJSR	Fm ⁻¹	1.00×10^{-12}	0.00	-
20	CJGR	Fm ⁻¹	1.00×10 ⁻¹²	0.00	-

21	VDBR	V	1.00	0.05	-
22	VDSR	V	1.00	0.05	-
23	VDGR	V	1.00	0.05	-
24	PB	-	0.40	0.05	0.99
25	PS	-	0.40	0.05	0.99
26	PG	-	0.40	0.05	0.99

* The value for *VB* is (NOT USED)!

11.8.6 The ON/OFF condition

The solution of a circuit involves a process of successive calculations. The calculations are started from a set of 'initial guesses' for the electrical quantities of the nonlinear elements. A simplified DCAPPROX mechanism for devices using ON/OFF keywords is mentioned in [9]. By default the devices start in the default state.

JUNCAP					
	Default	ON	OFF		
V _D	-0.1	0.7	-0.1		

11.8.7 Numerical Adaptation

To implement the model in a circuit simulator, care must be taken of the numerical stability of the simulation program. A small non-physical conductance, G_{min} , is con-

nected parallel to the conductance *G*. The value of the conductance G_{min} is 10^{-15} [1/ Ω].

11.8.8 DC operating point output

The DC operating point output facility gives information on the state of a device at its operation point.

Quantity	Equation	Description
G		Conductance
С		Capacitance

Remark: The conductance G_{min} is connected parallel to the conductance *G*. This conductance influences the DC operating output.

11.8.9 Temperature, Geometry and Voltage Dependence

The general scaling rules, which apply to all three components of the JUNCAP model, are:

$$T_{KR} = T_0 + T_R \tag{11.39}$$

$$T_{KD} = T_0 + T_A + \Delta T_A$$
(11.40)

$$\phi_{TR} = \frac{k \cdot T_{KR}}{q} \tag{11.41}$$

$$\phi_{TD} = \frac{k \cdot T_{KD}}{q} \tag{11.42}$$

$$\phi_{gR} = 1.16 - \frac{7.02 \cdot 10^{-4} \cdot T_{KR}^2}{1108.0 + T_{KR}}$$
(11.43)

$$\phi_{gD} = 1.16 - \frac{7.02 \cdot 10^{-4} \cdot T_{KD}^2}{1108.0 + T_{KD}}$$
(11.44)

$$F_{TD} = \left(\frac{T_{KD}}{T_{KR}}\right)^{1.5} \cdot \exp\left(\frac{\phi_{gR}}{2\phi_{TR}} - \frac{\phi_{gD}}{2\phi_{TD}}\right)$$
(11.45)

The internal reference parameters for the bottom component are specified by:

$$V_{DB} = V_{DBR} \cdot \frac{T_{KD}}{T_{KR}} - 2 \cdot \phi_{TD} \cdot \ln F_{TD}$$
(11.46)

520

$$C_{JB} = C_{JBR} \cdot A_B \cdot \left(\frac{V_{DBR} - V_R}{V_{DB}}\right)^{P_B}$$
(11.47)

$$I_{SGB} = J_{SGBR} \cdot F_{TD} \cdot A_B \cdot \left(\frac{V_{DB}}{V_{DBR} - V_R}\right)^{P_B}$$
(11.48)

$$I_{SDB} = J_{SDBR} \cdot F_{TD}^2 \cdot A_B \tag{11.49}$$

Similar formulations hold for the locos-edge and the gate-edge components; one has to replace the index *B* by *S* and *G*, and the area A_B by L_S and L_G , so for the locos-edge:

$$V_{DS} = V_{DSR} \cdot \frac{T_{KD}}{T_{KR}} - 2 \cdot \phi_{TD} \cdot \ln F_{TD}$$
(11.50)

$$C_{JS} = C_{JSR} \cdot L_S \cdot \left(\frac{V_{DSR} - V_R}{V_{DS}}\right)^{P_S}$$
(11.51)

$$I_{SGS} = J_{SGSR} \cdot F_{TD} \cdot L_S \cdot \left(\frac{V_{DS}}{V_{DSR} - V_R}\right)^{P_S}$$
(11.52)

$$I_{SDS} = J_{SDSR} \cdot F_{TD}^2 \cdot L_S \tag{11.53}$$

for the gate-edge:

$$V_{DG} = V_{DGR} \cdot \frac{T_{KD}}{T_{KR}} - 2 \cdot \phi_{TD} \cdot \ln F_{TD}$$
(11.54)

521

$$C_{JG} = C_{JGR} \cdot L_G \cdot \left(\frac{V_{DGR} - V_R}{V_{DG}}\right)^{P_G}$$
(11.55)

$$I_{SGG} = J_{SGGR} \cdot F_{TD} \cdot L_G \cdot \left(\frac{V_{DG}}{V_{DGR} - V_R}\right)^{P_G}$$
(11.56)

$$I_{SDG} = J_{SDGR} \cdot F_{TD}^2 \cdot L_G \tag{11.57}$$

In subsequent sections we will show the equations only for the bottom component.

11.8.10 JUNCAP - Capacitor and Leakage Current Model

• Junction capacitance of the source or drain diode In the charge description the following internal parameter is defined:

$$Q_{JDB} = \frac{C_{JB} \cdot V_{DB}}{1 - P_B} \tag{11.58}$$

In order to prevent an unlimited increase of the voltage derivative of the charge, the charge description is divided in two parts: the original power function and a supplemented quadratic function. At the cross-over point between these regions, indicated by V_L ..., the following parameters are defined:

$$F_{CB} = 1 - \left(\frac{1+P_B}{3}\right)^{\frac{1}{P_B}}$$
(11.59)

$$V_{LB} = F_{CB} \cdot V_{DB} \tag{11.60}$$

$$C_{LB} = C_{JB} (1 - F_{CB})^{-P_B}$$
(11.61)

$$Q_{LB} = Q_{JDB} \left\{ 1 - (1 - F_{CB})^{1 - P_B} \right\}$$
(11.62)

$$Q_{JBV} = \begin{cases} Q_{JDB} \cdot \left\{ 1 - \left(1 - \frac{V}{V_{DB}}\right)^{1 - P_B} \right\}, & V < V_{LB} \end{cases}$$
(11.63)

$$\left| Q_{LB} + C_{LB} (V - V_{LB}) \cdot \left\{ 1 + \frac{P_B (V - V_{LB})}{2 \cdot V_{DB} (1 - F_{CB})} \right\}, \quad V \ge V_{LB} \right\}$$

and similar expressions for the locos-edge and gate-edge charges, Q_{JSV} and Q_{JGV} . The total charge characteristic can be described by:

 $Q = Q_{JBV} + Q_{JSV} + Q_{JGV}$

Using elementary mathematics we can derive from Eqn. (11.63) simple equations for the capacitance of the bottom area:

$$C_{JBV} = \begin{cases} C_{JB} \cdot \frac{1}{\left(1 - \frac{V}{V_{DB}}\right)^{P_B}}, & V < V_{LB} \\ C_{LB} + \frac{C_{LB} \cdot P_B \cdot (V - V_{LB})}{V_{DB} \cdot (1 - F_{CB})}, & V \ge V_{LB} \end{cases}$$
(11.64)

and similar expressions for C_{JSV} and C_{JGV} .

The total capacitance can be described by:

$$C = C_{JBV} + C_{JSV} + C_{JGV}$$

• Bulk to source or bulk to drain diode current

With the scaled parameters of the preceding section, the diffusion and generation current components can be expressed as:

$$I_{DB} = I_{SDB} \cdot \left\{ \exp\left(\frac{V}{N_B \cdot \phi_{TD}}\right) - 1 \right\}$$
(11.65)

$$I_{GB} = \begin{cases} I_{SGB} \cdot \left(\frac{V_{DB} - V}{V_{DB}}\right)^{P_B} \cdot \left\{ \exp\left(\frac{V}{N_B \cdot \phi_{TD}}\right) - 1 \right\}, & V \le V_{DB} \\ 0, & V > V_{DB} \end{cases}$$
(11.66)

The first relation concerning the diffusion component, is valid over the whole operating range. The second relation, describing the generation current, shows an unlimited increase in the derivative of this function at $V = V_{\text{DB}}$. Therefore the power function is merged at V = 0.0 with a hyperbolic function in the forward bias range and the exponential part is divided by $\exp\left(\frac{V}{N_B \cdot \phi_{TD}}\right)$. This enables a gradual

decrease in the generation current component.

The hyperbolic function: $I_{\text{HYP}} = F_{\text{SB}} (V + V_{\text{AB}})^{-B}$ is used. The parameter *B* controls the decrease of the current for voltages *V*>0.0 for all generation components. The value of *B* is fixed and set to 2 in the model. The continuity constraints of function and derivative in the merge point lead to the following relations for F_{SB} and V_{AB} :

$$V_{AB} = \frac{B \cdot V_{DB}}{P_B} \tag{11.67}$$

$$F_{SB} = I_{SGB} \cdot V_{AB}^B \tag{11.68}$$

Now the generation current voltage characteristic in the forward region becomes:

$$I_{GB} = \frac{F_{SB}}{\left(V + V_{AB}\right)^B} \cdot \left\{ 1 - \exp\left(\frac{-V}{N_B \cdot \phi_{TD}}\right) \right\}$$
(11.69)

and the final model equations for the currents of the bottom area are:

$$I_{DB} = I_{SDB} \cdot \left\{ \exp\left(\frac{V}{N_B \cdot \phi_{TD}}\right) - 1 \right\}$$
(11.70)

$$I_{GB} = \begin{cases} I_{SGB} \cdot \left(\frac{V_{DB} - V}{V_{DB}}\right)^{P_B} \cdot \left\{ \exp\left(\frac{V}{N_B \cdot \phi_{TD}}\right) - 1 \right\}, & V \le 0.0 \end{cases}$$

$$I_{GB} = \begin{cases} I_{SGB} \cdot \left(\frac{V_{AB}}{V + V_{AB}}\right)^B \cdot \left\{ 1 - \exp\left(\frac{-V}{N_B \cdot \phi_{TD}}\right) \right\}, & V \ge 0.0 \end{cases}$$

$$(11.71)$$

With similar expressions for the locos-edge and gate-edge components, the total junction current can be expressed as:

$$I = (I_{DB} + I_{GB}) + (I_{DS} + I_{GS}) + (I_{DG} + I_{GG})$$
(11.72)